

Team Members

2

Project Overview

- Practicing basketball alone is inefficient without someone to return the ball to you
- Even if you make all of your shots, still have to retrieve ball
- Inefficient use of practice time
 - Energy/time lost chasing rebounds
- Current return systems require manual adjustment

General Requirements

- Track player at distance of 5-25 feet from rim
- Accurately track lateral movement of player in real-time
- Operational for >= 1 hour at a time
- System can withstand direct hit from basketball
- System weight does not pull rim downwards
- Easy setup/teardown of electronic part of system

Block Diagram

CDR Deliverables

Lead: Adam & Devon

Power System Requirements

- Supply battery power for >= 1 hour at a time
 - Limited by motor size (12V, max 2A)
- Lightweight (cannot weigh rim down)
- Power both controller (5V) and motor (12V)
- Switch between battery and outlet power

Power System Implementation

Power System Challenges

- Motor Path
 - Problem: Motor loaded down buck converter output
 - Cause: High motor inrush current
 - Solution: FET between buck and motor to limit current
- BBB Path
 - Problem: Loading of buck converter
 - Cause: Unknown
 - Solution: \$4.30 off-the-shelf 5V 1.5A switching regulator

Image Processing-Setup

- Logitech c270 720p HD Webcam
- Beaglebone Black Microcontroller with Debian Linux Operating System
- C++ Image Processing Code written in Cloud9 IDE.
- Code run on Beaglebone boot from an auto run startup script.

Image Processing-Code

- Uses OpenCV and V4L2 libraries to access camera and process images
- Uses 24-bit BGR pixel format in OpenCV Mat
- Compares pixel values to hard-coded target color to find target pixel coordinates
- Determines whether target is left, right, or centered and sets output signals accordingly.

Communicating with the motor

- Uses 3 GPIO pins as output pins-One for `turn left', one for `turn right', and one for enable.
- Uses one PWM pin to supply a voltage to the gate of the PMOS.
- Code controls pins by writing to corresponding GPIO files. Bonescript sets PWM at beginning and shuts it down at the end.

Image Processing-Moving Forward

• Timing

- current processing takes 10-25 ms per frame, takes new frame as soon as last one finishes processing
- Must make sure to capture quickly enough to take
 >=5 frames per second but not move too quickly to

confuse motor.

- Output voltages
 - Beaglebone outputs were noisy causing some unexpected motor responses. Fixed by minimizing signal overwrites.

Mounting

- 3D print the casing or alter existing plastic casing
- PCB and Beaglebone will stack
- Weight will be distributed evenly
- Module that can hold either the battery or AC unit
- Friction not an issue at this time.

Gantt Chart

	A	▶ R	S	Т	U	V	W	Х
1		7-Mar	14-Mar	21-Mar	28-Mar	4-Apr	11-Apr	18-Apr
2		CDR				FDR	FDR	Demo
3	Image Processing System							
4	Stationary Target Detection							
5	uController/Webcam Setup							
9	Code Optimization/Refinement							
8	Mechanical System				-			
9	Mounting/Packaging							
10	Power System							
11	Implementation Plan/Schematic							
12	Breadboard Design							
14	PCB Design							
15	System Integration & Test			-		_		25
16	Controller/Motor							
17	Power							24
18	Final System Test							80
19								
20	Lead Colors							
21	Brian							
22	Derek							
23	Adam							
24	Devon							
25	TBD/Volunteers Required							

UMassAmherst FPR Deliverables

- Functional BRO System
 - Lead: All
- Key Tasks
 - Functional PCB
 - Lead: Adam
 - All Components Mounted to Funnel System
 - Lead: Devon

Cost Estimate

- Budget Spent: \$316.03
- Budget Remaining: \$183.97
- Purchases Remaining
 - Mounting HW \$20-\$40
 - PCB & Parts \$40-50
 - AC Adapter \$13
 - Jersey \$20-30

- Worst-Case Estimated Total: \$473.78
- Worst-Case Final Product Cost: \$370

Questions?

Electrical & Computer Engineering

Cost Estimate

- SKLZ Shoot Around \$30
- Beaglebone Black \$55
- Webcam \$26
- Motor \$40
- Gear Printing \$11
- Mounting HW \$20-\$40
- Battery/Charger \$70-\$100 \$75
- Power supply \$30 \$23-\$28
- PCB \$35
 - Prototyping & Shipping \$103.78
- Jersey \$20-\$30

